## Radiative processes in High-Energy astrophysics Lara Nava

OUTLINE
Special relativity
Doppler effects (beaming)
Synchrotron
Compton scattering

## http://arxiv.org/archive/astro-ph



13. arXiv:1202.5949 [pdf, ps, other]

#### Radiative Processes in High Energy Astrophysics

Gabriele Ghisellini (INAF - Osserv. Astr. di Brera)

Comments: 157 pages, 64 figures. Lecture notes for a university course

Subjects: High Energy Astrophysical Phenomena (astro-ph.HE)

Luminosity L (bolometric):

Flux F (bolometric): energy passing a surface of 1cm<sup>2</sup> per second [erg/cm<sup>2</sup>/s]

- monochromatic F(v) [erg/cm<sup>2</sup>/s/Hz]
- in a given energy range  $F_{[v1-v2]}$  [erg/cm<sup>2</sup>/s]

$$F = \frac{L}{4\pi R^2}; \quad F(\nu) = \frac{L(\nu)}{4\pi R^2};$$

Fluence S: energy passing a surface of 1cm<sup>2</sup> integrated over the duration of the emission [erg/cm<sup>2</sup>]

T = duration of the emission 
$$S = \int_{0}^{T} F(t)dt$$
If F(t)=constant 
$$S = F \cdot T$$

#### Exercises for tomorrow:

- 1. estimate the flux of the Sun on the Earth (pg. 7-8)
- 2. estimate the flux of a GRB with  $L=10^{52}$ erg/s at z=2 (pg. 8)
- 3. estimate the fluence of the GRB in exercise 2 assuming that the flux is constant and the emission lasts 20 seconds. How much time does it take to collect the same fluence from the Sun?

## Special relativity

Consider a ruler and a clock both moving with velocity v. We can define two different reference frames:

- 1. K that sees the ruler and the clock moving at velocity v
- 2. K' that sees the ruler and the clock at rest

For simplicity, we consider a motion along the x-axis

$$\beta = \frac{v}{c} \qquad \qquad \Gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Special relativity: length contraction 
$$\Delta x = \frac{\Delta x'}{\Gamma} \to {
m contraction}$$

time dilation 
$$\Delta t = \Gamma \Delta t' \rightarrow {
m dilation}$$

#### Exercises for tomorrow:

- 4. estimate  $\beta$  and  $\Gamma$  (the Lorentz factor) of an object moving at v=10<sup>10</sup> cm/s. Is this object moving at a relativistic velocity? (relativistic velocity= $\Gamma$  is appreciably different than 1)
- 5. estimate the velocity v and  $\beta$  of a parcel of matter moving with a Lorentz factor  $\Gamma$ =100 (typical Lorentz factor of the fluid in GRBs)

Let's now take a picture of the ruler! Picture (or detector): collects photons arriving at the same time, but not necessarily emitted at the same time!

Consider an extended object (a bar) moving with velocity  $\beta c$  and reflecting (or emitting) photons.

l'=proper length  $I=I'/\Gamma$ 



The photon emitted in A1 at  $t=t_i$  after a time  $\Delta t_e$  reaches H. In the meantime, the bar moves from its initial position  $A_1B_1$  to the final one  $A_2B_2$ . The photon emitted in  $B_2$  reaches the detector at the same time of the photon emitted at earlier times in  $A_1$ .

Let's now take a picture of the ruler!

Picture (or detector): collects photons arriving at the same time, but not necessarily emitted at the same time!

Consider an extended object (a bar) moving with velocity  $\beta c$  and reflecting (or emitting) photons.

l'=proper length  $I=I'/\Gamma$ 

$$A_1H=c\Delta t_e$$
  $A_1B_1=rac{\ell'}{\Gamma}$   $B_1B_2=eta c\Delta t_e$  
$$A_1B_2=rac{A_1H}{\cos heta}=rac{\ell'}{\Gamma(1-eta\cos heta)}$$
  $B_1$   $B_2=A_1B_2\sin heta=\ell'rac{\sin heta}{\Gamma(1-eta\cos heta)}=\ell'\delta\sin heta$   $B_2$  Definition  $\delta=1/[\Gamma(1-eta\cos heta)]$ 

## The observed length depends on the viewing angle:

- reaches the maximum (equal to I') for  $\cos\theta=\beta$
- is equal to I'/ $\Gamma$  for  $\theta$ =90°
- is zero for  $\theta=0^{\circ}$

### To keep:

- viewing angle (between direction of photons reaching the observer and the velocity of the source of photons) is important
- distinguish between emission time and arrival time

$$A_1H = c\Delta t_e \qquad A_1B_1 = \frac{\ell'}{\Gamma} \qquad B_1B_2 = \beta c\Delta t_e$$
 
$$A_1B_2 = \frac{A_1H}{\cos\theta} = \frac{\ell'}{\Gamma(1-\beta\cos\theta)}$$
 
$$HB_2 = A_1B_2\sin\theta = \ell'\frac{\sin\theta}{\Gamma(1-\beta\cos\theta)} = \ell'\delta\sin\theta$$
 
$$B_2 \qquad \text{Definition} \quad \delta = 1/[\Gamma(1-\beta\cos\theta)]$$

#### Exercises for tomorrow:

6. Figure 3.1 in Ghisellini 2012: demonstrate that the observed length  $HB_2$  (see eq. 3.8) reaches a maximum for  $\cos\theta=\beta$  and that this maximum length is equal to l'.

## Consider the following situation: relativistic electron emitting radiation

Electron starts to emit when it is in A and stops when it reaches B. The difference between emission times is  $\Delta t_e$ . The first photon (emitted at A) after  $\Delta t_e$  reaches D. The electron instead, after  $\Delta t_e$  reaches B and emits the last photon. What is the difference in the arrival times  $\Delta t_a$ ?



$$\Delta t_{\rm a} = \Delta t_{\rm e}' \Gamma (1 - \beta \cos \theta)$$

For  $\theta=0^{\circ}$  (electron is moving toward us)

$$\Delta t_{\rm a} = \Delta t_{\rm e}' \Gamma (1 - \beta) = \Delta t_{\rm e}' \Gamma \frac{(1 - \beta^2)}{1 + \beta} = \Delta t_{\rm e}' \Gamma \frac{1}{\Gamma^2 (1 + \beta)} = \frac{\Delta t_{\rm e}'}{\Gamma (1 + \beta)}$$

Time contraction!



For 
$$\theta$$
=90°

$$\Delta t_{\rm a} = \Delta t_{\rm e}' \Gamma$$

Time dilation = usual special relativity (Lorentz transformations)

## Aberration of light

Another very important effect occurring when a source is moving at relativistic velocities is aberration of light.



Trajectory of the photon appears inclined Angles are different in different frames

$$\sin \theta = \frac{\sin \theta'}{\Gamma(1 + \beta \cos \theta')}$$

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'};$$

 $\frac{\sin \theta'}{\Gamma(1+\beta\cos \theta')} \quad \text{For } \theta' = 90^{\circ} \quad \sin \theta = 1/\Gamma$   $\text{If } \Gamma >>1 \text{ then } \sin \theta \approx \theta$  $\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'};$  Isotropic source emits half of its photons at 0'<90°





Observer sees half of photons beamed in a cone of semiaperture  $1/\Gamma$ 





## Synchrotron emission

Two ingredients: relativistic particles and magnetic field What is responsible for this kind of radiation is the Lorentz force, making the particle to gyrate around magnetic field lines: change in velocity direction = acceleration = radiation The velocity modulus does not change, because the Lorentz force does not work.



$$F_{\rm L} = \frac{d}{dt}(\gamma m \mathbf{v}) = \frac{e}{c} \mathbf{v} \times \mathbf{B}$$

$$r_{
m L} \, = \, rac{v_{\perp}^2}{a_{\perp}} \, = \, rac{\gamma m c^2 eta \sin heta}{e B}$$

# Total power emitted by a single particle with pitch angle $\theta$ :

$$P_{\rm S} = \frac{2e^4}{3m^2c^3}B^2\gamma^2\beta^2\sin^2\theta$$

- The magnetic energy density is  $U_B \equiv B^2/(8\pi)$
- the quantity  $e^2/(m_{\rm e}c^2)$ , in the case of electrons, is the classical electron radius  $r_0$
- the square of the electron radius is proportional to the Thomson scattering cross section  $\sigma_{\rm T}$ , i.e.  $\sigma_{\rm T} = 8\pi r_0^2/3 = 6.65 \times 10^{-25} {\rm cm}^2$ .

Total power emitted by the single electron:

$$P_{\rm S}(\theta) = 2\sigma_{\rm T}cU_B\gamma^2\beta^2\sin^2\theta$$

For isotropic distribution of pitch angles:

$$\langle P_{\rm S} \rangle = \frac{4}{3} \sigma_{\rm T} c U_B \gamma^2 \beta^2$$

## Synchrotron cooling time

$$t_{
m syn} = rac{E}{\langle P_{
m S} 
angle} = rac{\gamma m_{
m e} c^2}{(4/3)\sigma_{
m T} c U_B \gamma^2 eta^2} = rac{3 m_e c^2}{4 \sigma_{
m T} c \gamma U_B};$$

#### Exercises for tomorrow:

7. Estimate the synchrotron cooling time of an electron emitting gamma-rays in a GRB ( $\gamma$ =200 and B=10 $^6$ Gauss) and compare it with the cooling time of an electron in the vicinity of a supermassive AGN black hole and in the radio lobes of a radio loud quasar (see section 4.2.1)

## Synchrotron spectrum and typical frequency

$$v_S = \gamma^2 B \frac{e}{2\pi m_e c}$$

$$u_{
m s} = \gamma^2 
u_{
m L}; \qquad 
u_{
m L} \equiv \frac{eB}{2\pi m_{
m e}c}$$

#### Exercises for tomorrow:

- 8. Estimate the typical synchrotron frequency of the electron in exercise 7
  - a) in the frame at rest with the emitting electron
  - b) in the frame of the observer that see the electron moving toward him with a Lorentz factor  $\Gamma$ =100.

## Synchrotron spectrum and typical frequency Emission from 1 single electron



## Electron energy distribution:

In high-energy astrophysics is often a power-law distribution:

$$N(\gamma) = K \gamma^{-p}$$

## The resulting spectrum: power-law segments

$$t < t_{\text{cool}} \quad \Rightarrow \quad F(\nu) \propto \begin{cases} \nu^2 & \nu < \nu_{\text{a}} \\ \nu^{1/3} & \nu_{\text{a}} \le \nu < \nu_{\text{m}} \\ \nu^{-\frac{p-1}{2}} & \nu_{\text{m}} \le \nu < \nu_{\text{cool}} \end{cases}$$

$$t > t_{\text{cool}} \quad \Rightarrow \quad F(\nu) \propto \begin{cases} \nu^2 & \nu < \nu_{\text{a}} \\ \nu^{-\frac{p}{2}} & \nu \ge \nu_{\text{cool}} \end{cases}$$

$$t > t_{\text{cool}} \quad \Rightarrow \quad F(\nu) \propto \begin{cases} \nu^2 & \nu < \nu_{\text{a}} \\ \nu^{1/3} & \nu_{\text{a}} \le \nu < \nu_{\text{cool}} \\ \nu^{-\frac{1}{2}} & \nu_{\text{cool}} \le \nu < \nu_{\text{m}} \\ \nu^{-\frac{p}{2}} & \nu > \nu_{\text{m}} \end{cases}$$

Compton scattering

Ingredients: photons and electrons

Direct Compton scattering: when the electron is at rest  $\rightarrow$  transfer of energy from photon to electron

Inverse Compton scattering: electron has a energy (greater than the typical photon energy) → transfer of energy from electron to photon

## **Direct Compton scattering**

## electron at rest and incoming photon



#### Cross section:

When the energy of the incoming photon (as seen by the electron) is small with respect to m<sub>e</sub>c<sup>2</sup> the process is called Thomson scattering

When the energy of the incoming photon (as seen by the electron) is comparable or larger then m<sub>e</sub>c<sup>2</sup> the process in in the Klein-Nishina regime.



## **Inverse Compton scattering**

## electron at rest and incoming photon



Final photon energy

$$E_f = \frac{4}{3}\gamma^2 E_i$$

Compton power:

$$P_{
m c}(\gamma) \ = \ rac{4}{3} \sigma_{
m T} c \gamma^2 eta^2 U_{
m r}$$

Compton cooling time

$$t_{
m IC} = rac{3m_ec^2}{4\sigma_{
m T}c\gamma U_{
m r}};$$

## Compton:

Final photon energy

$$\mathbf{v}_f = \frac{4}{3} \gamma^2 \mathbf{v}_i$$

Compton power:

$$P_{
m c}(\gamma) \ = \ rac{4}{3} \sigma_{
m T} c \gamma^2 eta^2 U_{
m r}$$

Compton cooling time

$$t_{\mathrm{IC}} = rac{3m_ec^2}{4\sigma_{\mathrm{T}}c\gamma U_{\mathrm{r}}};$$

Synchrotron:

$$\nu_{\rm s} = \gamma^2 \nu_{\rm L}$$

$$\langle P_{\rm S} \rangle = \frac{4}{3} \sigma_{\rm T} c U_B \gamma^2 \beta^2$$

$$t_{\rm syn} = \frac{3m_e c^2}{4\sigma_{\rm T} c \gamma U_B};$$

Synchrotron self Compton:

Population of relativistic electrons in a magnetized region. They produce synchrotron radiation and fill the region with photons. These photons are then upscattered by the same population of electrons