

Nuclear Gamma-Ray Astronomy – the Next Step

Instrument Options in the MeV range

The roadmap of gamma-ray astronomy

A DUAL mission for Nuclear Astrophysics and its relevance for GRB science

Peter von Ballmoos, IRAP(CESR) Toulouse

are there reasons to study MeV photons other than γ -ray bursts ?

Nuclear lines

Thermal / non-thermal transition

nuclear production and CR interaction sites, abundances, ISM phases, particle spectra, kinematics

Positron annihilation

e+ production and annihilation site diagnostics

Cosmic accelerators : link between accretion (thermal) and ejection (non-thermal)

astronomy in the transition region : the "impossible" MeV range

Geometric Optics : Modulating Aperture Systems

Collimator "on" - "off" telescope

GRO - OSSE

off

time

Occultation Transform Imaging

with the planet earth as 'rotation' modulation collimator (or scanning anti-collimator)

GRO - BATSE

Geometric Optics : Modulating Aperture Systems

roadmap of space-borne high-energy astrophysics

Post-INTEGRAL aera : a white spot on the high-energy astrophysics roadmap

requirements for a future gamma-ray mission

Gamma-ray source statistics

Gamma-ray source statistics

Gamma-ray source statistics

Requirements for a future gamma-ray mission

 $f_{3\sigma} < 5.10^{-7} \text{ s}^{-1.} \text{cm}^{-2}$

$f_{3\sigma} < 5.10^{-7} \text{ s}^{-1} \text{ cm}^{-2}$! You must be kidding

This means detecting one photon per cm² and month

with a BG of one CR particle per cm² and second producing about one 511 keV BG event per cm³ every minute in a Ge detector

Requirements for a future gamma-ray mission

DUAL requirements for a future gamma-ray mission

wide range of angular extent, intensities different by several orders of magnitude => two subsets of requirements :

- very deep pointed observations
- medium-sensitivity large-scale exposure (multiplexing advantage)

Instrument concepts in nuclear gamma-ray astronomy

The instrumental categories in nuclear astrophysics reflect our current perception of *light* itself.

How to focus Gamma-rays : Laue lenses

Bragg condition for Cu [111] planes

$2dsin\theta = n\lambda$

d [111]

 λ (847 keV) = 1.46 · 10⁻² Å

 $2\theta = 2 \arcsin(\lambda/2d) = 0.40^{\circ}$

= nλ = 2.08 Å

CLAIRE : tests in the lab ... and beyond

demonstrate the principle of a γ -ray lens on an astrophysical target

Launch Balloon floating altitude Landing

14 june 2001, 8h15 UT, CNES balloon base, Gap-Tallard
 Zodiac Z600 (600.000 m³)
 > 41 km (3.8 g/cm2 residual atmosphère), during 5h 30'
 14 june 2001, 17 h UT, Bergerac, Acquitane (~Bordeaux region)

CLAIRE 2001 : first light for an astrophysical source

CLAIRE : 14 m, 22.5 m, 205 m ... infinity ! $\epsilon_{\text{peak,3 keV}} \approx 10$ %

Technological Readiness Level (TRL) of the Laue lens

ESA pre-industrial serie / TRL study of crystal production

SiGe : mosaicity 20 and 40 arcsec, good homogeneity Reflectivities : 20-30% at 284 keV.10-20% at 517 keV

Cu : mosicity between 20 and 40 arcsec Reflectivities : 15-20% at 511 keV, 12-23% at 816 keV

Pb (111) T₀=12mm, E=700 keV Mosaicity = 27 arcsec; Quality fact : 100%

Rh (220) T₀=10mm, E=500 keV Mosaicity = 27 arcsec; Quality fact : 82%

Ag (111) T₀=10mm, E=500 keV Mosaicity = 56 arcsec; Quality fact : 92%

Au (111) T₀=2mm, E=500 keV Mosaicity = 26 arcsec; Quality fact : 90%

The development of gamma-ray lenses

CLAIRE 2003 CNES balloon & TGD

Max 2005 CNES/PASO prephase A

GRI 2007 Cosmic Vision proposal

Crab detection : First light for a gamma-ray lens Demonstrating the feasiblity of a spaceborne Laue Lens Community adopts the Laue lens for the next gamma-ray mission

crystal R&D : gold, silver crystals; curved Si/Ge crystals; ESA pre-serie **lens R&D :** lens prototype TAS Cannes, vibration, qualification

DUAL requirements for a future gamma-ray mission

wide range of angular extent, intensities different by several orders of magnitude => two subsets of requirements :

- very deep pointed observations
- medium-sensitivity large-scale exposure (multiplexing advantage)

and what about gamma-ray bursts ?

Instrument concepts in gamma-ray astronomy

The instrumental categories in nuclear astrophysics reflect our current perception of *light* itself.

the principle of Compton Telescopes

measured parameters :

x ₁ ,y ₁	:	interaction location in D_1
E ₁	:	energy deposit in D ₁
x ₂ ,y ₂	:	interaction location in D_2
E ₂	:	energy deposit in D ₂
t, ∆t	:	arrival time, TOF D ₁ -D ₂

derived parameters :

 $\cos \phi = 1 - m_e c^2 / E_2 + m_e c^2 / E_1 + E_2$

encoding of the two dimensional source distribution into a 3-D dataspace ($\mathbf{X}, \Psi, \varphi$)

Balloon flights of new generation Compton telescopes

LXeGRIT 1997, Kyoto Univ. 2006 liquid Xe TPC

TIGRE 2007, 2010

D1 : DSSD D2 : Nal(TI) &Csl(TI)

NCT 2005, 2009

Ge strip detectors

The development of Compton Telescopes

COMPTEL 1991-1999 large scintillator CT

MEGA/MEGA balloon Si tracker / CT

NCT balloon flights Ge DSSD, 3D loc (mm³)

first ²⁶Al all-sky map

demonstrated polarization

Crab detection 2009

Compton telescopes have wide fields

a 2π field of view ? scatter angle φ from energy deposits E1,E2 detection of a coincidence event yes, but mostly for BG

Compton telescopes have wide fields

Time of Flight coincidence (TOF) COMPTEL data

channel width : 0.25 ns distance D1-D2 : 1.5 m \approx 5 ns) channel width : 0.25 ns "upward BG" from spacecraft and the Earth

option A : time-of-flight electronics

measuring TOFs requires long baselines between D1 and D2

down

250

=> low efficiencies (few % at most)

Compton Telescope Mission concepts

ACT

Nasa Mission Concept study Boggs et al. 2006

GRIPS/GRM

ESA cosmic vision 2011 Greiner et al. 2007/11

CAPSiTT

ESA cosmic vision 2011 Lebrun et al. 2011

Ge strip detectors mass (inst) : 2100 kg f_{3s}≈ 1.7⁻10⁻⁶ ph s⁻¹ cm⁻²

D1 Si-strip, D2 LaBr3 mass (inst) : 1578 kg $f_{3s} \approx 3.4 \ 10^{-6} \text{ ph s}^{-1} \text{ cm}^{-2}$ $f_{3s} \approx 5 \ 10^{-6} \text{ ph s}^{-1} \text{ cm}^{-2}$

Si-strip detectors mass (inst) : 970 kg

all telescopes have a wide FoV (1-2 ster) and modest angular resolution ($\geq 2^{\circ}$)

option B : anticoincidence shield

DUAL option C : no BG from external passive mass

detector on extendible boom

TWO VIEWS OF THE EX

Apollo 15 BG spectrum

trans-Earth coast detector : Nal - 7 cm, 7 cm Ø plastic veto

inboard : *on* spacecraft ($W_{sc} = 2\pi$) extended position (boom, 7.6 m)

solid angle ratio W_{sc}/W_{b} s/c seen in extended position (W_{b} ~0.28 sr)

 $=> W_{sc}/W_{b} \approx 20$

=>

onboard BG $(b_{sc} + b_r)/5 = (b_{sc}/20) + b_r$

b_{r/}b_{sc} ≈ 0.2 !!

NuSTAR – Pegasus XL launch by the end of this session

13.6.2012 at 16h30 life broadcast http://www.nasa.gov/nustar

mast : 10 m focal length payload mass : 360 kg mission lifetime : 3 years coverage : full sky

Deployable Mast

Focal Plane/ Detectors

GeD/ parameter	ASCI	NCT	
Strip pitch	2.00 mm	2.00 mm	
Individual detector dimensions	100x100 mm ²	74x74 mm ²	
	15 mm	15 mm	
Spectral resolution (FWHM)@662 keV	1.6 keV	1.6 keV	
Spectroscopy threshold	10 keV	12 keV	
total # strip channels	4500	912	
Instrument volume	6750 cm ³	972 mm ³	

OUAL All Sky Compton Imager (ASCI)

Incidence angle [deg]

Energy range	0.1 – 10 MeV	
Spectral resolution (10 MeV - 0.1 I	0.2 – 1 % FWHM	
Field of view		4π at all times
Angular resolution	511 keV	2.7° (4.5° at sensitivity limit)
	847 keV	2.1° (3.5° at sensitivity limit)
	1809 keV	1.6° (2.7° at sensitivity limit)
Narrow line sensitivity	511 keV	2.610 ⁻⁶ ph cm ⁻² s ⁻¹
(any DC source after T _{obs} = 3 year)	847 keV	1.1.10 ⁻⁶ ph cm ⁻² s ⁻¹
	1809 keV	7.2.10 ⁻⁷ ph cm ⁻² .s ⁻¹
Continuum sensitivity	500 keV	4.2.10 ⁻⁵ ph cm ⁻² s ⁻¹ MeV ⁻¹
(any DC source, T _{obs} = 3 year)	5 MeV	1.5 10 ⁻⁶ ph cm ⁻² s ⁻¹ MeV ⁻¹
Polarization sensitivity (MDP)	1 Crab	0.2% (statistical limit only)
3σ , any DC source, 200-500 keV	0.1 Crab	2.4%
T _{obs} =3 year	0.01 Crab	23.6%
GRB sensitivity (5 s)		~ 10 ⁻⁶ erg/cm ²
Timing		1 msec relative, 1 ms absolute

Coded Mask Optics Laue Lens Optics

Deep dedicated pointing to GC fine imaging of the 511 keV bulge LLO : SN1a up to 40 Mpc

All the sky (4π !) – all the time
"Time has no mass !"
Polarimetry

All Sky Compton Imager

5800 crystals ona CeSiC monolithic substrate diameter : 98 cm, m_{total}=80 kg, focal length : 30 m

collect photons on ~ 300 cm², detect them on 1.5 cm² => S/N !

Energy range	800-900 keV
Spectral Resolution	0.2 – 1 % FWHM
Field of view / Angular resolution	5 arcmin / 1 arcmin
narrow Line Sensitivity (dE = 3%, T_{obs} =10 ⁶ sec)	1.0 ^{-10⁻⁶ ph cm⁻² s⁻¹}
broad Line Sensitivity (dE = 0.5%, T_{obs} =10 ⁶ sec)	1.8 1.0 10 ⁻⁶ ph cm ⁻² s ⁻¹

line sensitivity

GC e+e- annihilation map => arcmin resolution p of all CT's angular resolution (2-3°) Skinner et al. 2011

- very high exposure $(T \cdot (1-f_{SN}))$ of mission lifetime T)
- low BG due to "Compton-Collimator"

DUal sensitivity in the 511 keV line

total galactic 511 keV flux

Compton mode (direct localization, spectroscopy, polarization)

 6σ fluence (100 keV – 10 MeV) ~ 1.5x10⁻⁶ erg/cm² for long GRBs ~ 4x10⁻⁷ erg/cm² for short GRBs,

(\approx BATSE and Swift-BAT, albeit in lower energy bands than DUAL)

Burst mode (single interactions

energy threshold at ~20 keV => effective area ~300 cm² per Ge layer ! detection of 600 GRBs/yr !

polarisation sensitivity :

50% polarisation for ~ 60 GRBs per year 10% polarisation for ~ 20 GRBs per year

A level of 10% is very constraining for models and is the level of optical polarisation which has been observed in a very few early afterglows

DUAL ASCI Minimum detectable polarisation for GRB's

for a gamma-ray burst characterized by broken power-law spectrum with a single break (a=-1.0, b=-2.5, break : 150 keV)

SN1a !

Resolving the e⁻e⁺ emission in the Galactic bulge

High angular resolution imaging of the Galactic Center Sources

Galactic Radioactivities (²⁶Al, ⁶⁰Fe, ⁴⁴Ti ...)

e⁻e⁺ Annihilation Radiation

Compact Sources (LMXB, magnetars, AGN ...)

Gamma-ray bursts

- localization (direct imaging)
- spectroscopy (E/ Δ E $\approx 0.2 \%$!)

- polarisation !

configuration

payload mass

science

10-m mast : 30 kg ASCI : 90 kg GRB's, all sky surveys

10-m mast : 30 kg ASCI : 90 kg mask : 50-100 kg

GRB's

all sky surveys high res mapping in GC

30-m mast : 60 kg ASCI : 90 kg Laue lens : 80 kg

GRB's

all sky surveys SN1a radioactivity

30-m mast : 60 kg ASCI : 90 kg mask : 50-100 kg Laue lens : 80 kg

GRB's

all sky surveys high res mapping in GC SN1a radioactivity

