#### Properties of Galaxies hosting Gamma-Ray Bursts

Sandra Savaglio (Max-Planck-Institut für extraterrestrische Physik, Garching)

#### EXTREME UNIVERSE LABORATORY

Moscow, June 2012

**GRB 011121** redshift z = 0.3624.0 billion years ago

#### Stellar mass of the host: $M_* = 6.5 \times 10^9 M_{\odot}$

**Star formation rate:** 

SFR = 2.2 M<sub>☉</sub> yr<sup>-1</sup>

#### **Growth time scale:**

ρ = M\*/SFR = 1/sSFR = 2.95 Gyr
Redshift of formation:

*z* = 0.815

#### Gamma-ray burst - SN (Ic,Ib) connection



Galama et al. (1998)

#### **GRB** host galaxies

#### 2002fz 2002hg 2002hs 2002kb 2002kl 2002ke 2003N 2003ba 2003dx 2003bb 2003bc 2003dz 2003ea 2003er 2003et 2003ew

Core-collapse SN host galaxies z < 1.2

#### GRB host galaxies z < 1.2



Fruchter et al. (2006) (see also Kelly, Kirshner & Pahre 2008; Svensson et al. 2010)

#### **GRB** environment



Fruchter et al. (2006) (see also Svensson et al. 2010)

Kelly, Kirshner & Pahre (2008)

#### Gamma-ray burst – SN connection



Heger et al. (2003)

#### Mass-Metallicity relation in GRB hosts



Metallicity

Galaxy stellar mass

Levesque et al. (2010)

#### Specific star formation rate of GRB hosts



SSFR

 $\rho_* = M_*/SFR =$ 

### GRB host galaxies at z < 1.5 generally are:

- small
- metal and dust poor
- star forming

## What about z > 1.5 GRB hosts?

Main changes in the history of the universe:

- SFR density
- stellar mass
- galaxy merger rate
- galaxy size

#### GRB hosts at redshift z > 2



#### Redshift evolution of galaxy mean size



## Galaxy formation and evolution: the phenomenological context

#### Cosmic star formation and merger rate

#### The last 10 Gyr

#### **SFRD**

#### Major merger rate



0.1  $\mathbf{f}_{\mathrm{B}}$ x25 z = 0 - 1.80.01 1.5 2.5 3.5 4 2 З (1+z)

Hayes, Schaerer & Östlin (2010)

Bluck et al. (2011)

#### Cosmic star formation rate for different masses

#### Madau plot per stellar-mass bin



Galaxy stellar mass

#### **Cosmic chemical evolution**

#### Mass-metallicity relation



#### Galaxy stellar mass

Tremonti et al. (2004) Mannucci et al. (2010) (see Campisi et al. 2011; Niino 2011 for FMZ of GRBHs)

Savaglio, Glazebrook, Le Borgne, et al. (2005) (see also Erb et al. '06, Maiolino et al. '08)

#### Cosmic stellar mass assembly

#### Total stellar mass redshift evolution



## Redshift distribution of GRBs

#### History of the most distant objects



#### The Highest Redshift Gamma-Ray Bursts

Cucchiara et al. (2011)





#### The blessing and the curse



#### They fade away very quickly



They fade away very quickly

### **GRBs and the Cosmic Chemical Evolution**



#### GRB afterglows and host galaxies

Afterglow spectrum Cold interstellar medium (*T* Heavy element enrichme Molecular hydrogen Dust extinction Dust depletion

GRB



High redshift galaxies

## z=1.562 V=23.78

QSO J2233-60 STIS

z=2.2

#### z=0.937 V=27.0

**GRB 011121 host** 

GDDS ACS/HST

V=17.2

#### Gamma-Ray Burst redshift distribution



Hopkins & Beacom (2006)

#### Star Formation Rate Density of the Universe



## The highest and lowest metallicity GRB-DLAs



#### Is there a typical GRB host?



### Is there a typical GRB host?



|            | SBS 0335-052                          | <b>GRB 980425 host</b>  | GRB 090323 host                       |
|------------|---------------------------------------|-------------------------|---------------------------------------|
| Redshift   | 0.0125                                | 0.0085                  | 3.57                                  |
| MB         | -16.9                                 | -18.6                   | -24.9                                 |
| Size       | 6×5 kpc <sup>2</sup>                  | 30×20 kpc <sup>2</sup>  | < 6 kpc                               |
| log (Z/Z⊙) | -1.4                                  | -0.5                    | +0.25                                 |
| M(HI)      | ~ 8×10 <sup>8</sup> M⊙                | _                       | _                                     |
| M(star)    | ~ 4×10 <sup>7</sup> M⊙                | ~ 2×10⁰ M⊙              | ~ 6×10¹º M⊙                           |
| SFR        | 0.5 M⊚ yr <sup>_1</sup>               | 0.2 M⊙ yr <sup>_1</sup> | >6 M⊙ yr⁻¹                            |
| SSFR       | 12.5 Gyr <sup>_1</sup>                | 0.1 Gyr-1               | > 0.1 Gyr <sup>-1</sup>               |
| N(HI)      | 7.0×10 <sup>21</sup> cm <sup>-2</sup> | _                       | 5.6×10 <sup>20</sup> cm <sup>-2</sup> |
| Age        | < 400 Myr                             | ~ 900 Myr               | < 500 Myr                             |

#### **Cosmic chemical evolution**

Levesque et al. (2010) Krühler et al. (2012)





Savaglio (2006) Prochaska et al. (2007) Fynbo et al. (2008) Rau, Savaglio, Krühler, Afonso, Greiner et al. (2010) Savaglio, Rau, Greiner, Krühler et al. (2012) Based on modeling in Savaglio et al. (2005)

Pontzen et al. (2010)

## High-z GRB hosts are merging systems?

## Double absorbers in high-z GRB afterglows











GRB 090426 z = 2.609



 $M_{\star} = 6.5 \times 10^{10} \text{ M}_{\odot}$ log  $N_{\text{HI}} = 18.7 \pm 0.1$ SFR ~ 1.7 M<sub> $\odot$ </sub> yr<sup>-1</sup>

Thöne et al. (2011) Levesque et al. (2010)



Perley et al. (2012, GCN)

Perley et al. (2012)

#### Mystic Mountain with HST

# A multi-wavelength exploration of the GRB host population: from UV to radio

Mystic Mountain with HST

# A multi-wavelength exploration of the GRB host population: from UV to radio

#### **Dust extinction in GRBs**



## GRB host galaxy mass function



PRELIMINARY

#### Galaxy SED from UV to radio



## GRB host SED opt-radio





Michałowski, Hjorth, Castro Cerón & Watson (2008)

#### Radio observations of GRB hosts



GRB hosts important probe of galaxy formation & evolution
 Dusty obscured galaxies detected with GRBs
 GRB hosts show large spread in cosmic chemical enrichment
 Star formation activity important in GRB hosts ==> SFRD
 We rely on Swift, future γ-ray missions required