Predictions for A Next-Generation Rapid-Optical-IR-Response GRB Mission

2nd Moscow GRB Conference 2013 October

Bruce Grossan

EUL UCB SSL

Collaborators: George Smoot & Students of the EUL

- · Previously -
 - Presented details of a Next-Generation GRB Mission (NGRG) that would image GRBs in the Optical ~ 1 s after trigger.
 - Scaled-down BAT for rough positions + Beam-steering system points optical/IR Camera within ~1 s

- Previously -
 - Presented details of a Next-Generation GRB Mission (NGRG) that would image GRBs in the Optical ~ 1 s after trigger.
 - Scaled-down BAT for rough positions + Beam-steering system points optical/IR Camera within ~1 s
- This year-
- Improved image stabilizing scheme
- Data analysis to show feasibility of mission via reasonably high event rates from conservative analysis

- · Previously -
 - Presented details of a Next-Generation GRB Mission (NGRG) that would image GRBs in the Optical ~ 1 s after trigger.
 - Scaled-down BAT for rough positions + Beam-steering system points optical/IR Camera within ~1 s
- This year-
- Improved image stabilizing scheme
- Data analysis to show feasibility of mission via reasonably high event rates from conservative analysis
- Thanks to collaborators George Smoot and my EUL student collaborators Boris, Egor, Kiril

Previously -

- Presented details of a Next-Generation GRB Mission (NGRG) that would image GRBs in the Optical ~ 1 s after trigger.
- Scaled-down BAT fo points optical/IR Car
- This year-
- Improved image stabiliz
- Data analysis to show fe rates from conservative
- Thanks to collabo EUL student collabor

NGRG Concept

- "Mini-Swift" designed to have same FOV X, opt
- Coded mask X-ray camera localizes GRB...
 - ("optimal" instrument sense see Burrows+)
- Big Difference: Beam-steering mirror points optical telescope - *Much* faster than *Swift*: ~ 1 s to target.

I. RAPID OPTICAL RESPONSE TO DATE

We are Starved for Early Optical Data

- Swift dominates optical GRB early measurements... but Optical Response Speed Limited: Few data t< 60 s
- ROTSE, etc. important, but small number of t_{rise} < 60 s.

Early Emission "Naked-Eye Burst", Best-Studied, brightest ever burst

- Prompt X-γ,
 - phot index ~2.0 (low-E),
 Jagged in time
- X Afterglow
 - breaks, phot index ~ 1.7
- UVOpt:
 - prompt seen (RARE!!!), with structure
 - ----

6

Early Emission "Naked-Eye Burst", Best-Studied, brightest ever burst

 $\alpha_0 = 2.264 \pm 0.010$

 $\alpha_{1b} = -0.500$ (fixed)

 $\alpha_{1,0} = 1.279 \pm 0.017$

6

 10^{8}

 F_{v} (μJy) or $F_{v,X}$ (nJy)

- Prompt Y_V
- But this is the **ONLY** GRB ever measured this well.
- Typical GRB much more faint, 1 optical point ~ 100 s, most ~> 10^3 s.
- Look Carefully at the composite LC figures -
- The vast majority have NO MEASUREMENT of the rise time; Most rise times are for very slow rises, which are relatively rare.

Are Opt, γ early emission correlated?

- Both examples, and counter-examples
 - Data poor unless ultra-bright
 - ...but useful to associate emission processes, to understand jet

- 041219 Probably.
- 990123- No.
- 080319b- Mostly
 (best data)

A "UVOT Early Response Sample"

- Goal: Uniform, Earliest, UVOT LC points
- GRBs 060502 081007
 - UVOT responded uniformly: 100 s exposure, W (open) filter
 - W exposures begin t~ 70-150 s
- Require $< t_{mid} > < 170 s$
- Defines "Early Emission & Response" Sub-sample: no image triggers, ground analysis, etc.

NGRB	224	NGRB_rly	209
RGRB(yr ⁻¹)	92	RGRB_rly (yr ⁻¹)	86
Robs_uvot_rly (yr-1)	38	Rdet_uvot_rly (yr-1)	18

Bruce Grossan • Moscow 2013

SWIFT+ GROUND TO DATE

- UVOT t~60+ s
 W<19.2 mag/10s
 ~18 detections / yr.
- ROTSEIII dominates t ~20+s R < 16.9 mag/10 s Detections⁽¹⁾:~ 3 / yr. in GCN (probably not all reported)
- Master-Net fast & wide....
 but < ~15.2 mag many UL

(1) GCN notices 2011 - 2012

VVIEI + (R)Compare to UVOT ~100-200s flux: **UVOT Early Sample Brightness** Distribution • UVOT - t~60+ s W<19.2 mag/10s Fraction of Initial Detections (<W) 1 ~18 detections / yr. 0.8 ROTSEIII dominates t ~20+s R < 16.9 mag/10 s0.6 Detections⁽¹⁾:~ 3 / yr. in GCN (probably not all reported) 0.4 Master-Net fast & wide.... 0.2 but $< \sim 15.2$ mag many UL Detections 060502-081007 0

(1) GCN notices 2011 - 2012

Bruce Grossan • Moscow 2013

13

15

14

16

w

17

18

(mag)

19

20

SWIFT+ GROUND TO DATE **Compare to UVOT** ~100-200s flux: UVOT - t~60+ s UVOT - t~60+ s

- UVOT t~60+ s
 W<19.2 mag/10s
 ~18 detections / yr.
- ROTSEIII dominates t ~20+s R < 16.9 mag/10 s Detections⁽¹⁾:~ 3 / yr. in GCN (probably not all reported)
- Master-Net fast & wide.... but < ~15.2 mag many UL

Bruce Grossan • Moscow 2013

Friday, October 11, 13

(1) GCN notices 2011 - 2012

adapted from page et al.

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

 No early bright flash (~10-20s) - supports magnetically dominated jet (no reverse shock)

adapted from page et al.

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)

adapted from page et al.

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)
- Optical delayed vs. gamma supports internal shock⁽¹⁾ (optical produced at larger radius)

adapted from page et al

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)
- Optical delayed vs. gamma supports internal shock⁽¹⁾ (optical produced at larger radius)
- Rapid opt variability (like prompt gamma) supports internal shock (weak constraint) –Note high time resolution required.

adapted from page et al

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)
- Optical delayed vs. gamma supports internal shock (optical produced at larger radius)
- Rapid opt variability (like prompt gamma) supports internal shock (weak constraint) –Note high time resolution required.

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)
- Optical delayed vs. gamma supports internal shockⁿ (optical produced at larger radius)
- Rapid opt variability (like prompt gamma) supports internal shock (weak constraint) –Note high time resolution required.
- With small fraction of first 60 s observed, how can we say anything statistical about e.g. "no bright early peak"?

(1) Sari & Piran (1999)

- No early bright flash (~10-20s) supports magnetically dominated jet (no reverse shock)
- Early, bright optical peak, up to 9th mag suggests reverse shock emission ⁽¹⁾ (990123)
- Optical delayed vs. gamma supports internal shockⁿ (optical produced at larger radius)
- Rapid opt variability (like prompt gamma) supports internal shock (weak constraint) –Note high time resolution required.

Shock Breakout Test for LLGRB - E. Nakar Tue Talk

(1) Sari & Piran (1999)

Bruce Grossan • Moscow 2013

External shock-061112

 Early opt too bright for extrapolation of X, gamma

Perley+08

"Multi-Messenger" Science

- Physics in correlation and delay for
 - Short GRB: gravitational wave vs. optical-gamma light ⁽¹⁾
 - GRB optical emission for source ID, GW vs. photon arrive time for models.
 - SN-GRB: neutrinos vs. optical-to-gamma prompt light
 - GRB UHECR: Air shower detector signals vs. optical prompt light
 - test models, identify sources
 - physics of explosion, jet processes
 - time between gamma and optical peak agree with models?
 - » e.g. same time scale for all components constrains radiation mechanism, different time scales& correlations, suggestions different mechanisms
 - GR alternative models- UHE photons vs. Low E delay (can do experiment to $z \ge 8$, large Δv) constrains alternative models.

... though most of these come with caveats on complex jet structure.

¹ e.g. Nishizawa, Taruya & Saito, cosmology with Space GW detectors also needs red shift; perhaps get many from prompt observations of SHGRB.

- B. Grossan 2MG -

Dust Evaporation

- Many GRB in dusty star forming regions
- GRB have enough energy to vaporize dust of typical star forming cloud - < 60 s time scale
 - Models: Salvaterra+09, Perna+03; >60 s too late: Oates+09, Perley+10
- Time-dependent extinction measurement would
 - confirm calculations of dust density, evaporation
 - locate a given GRB within star-forming local cloud, not behind dust lane
- Need time-dependent spectral slope starting earlier than most previous measurements

Models: Salvaterra+09, Perna+03; >60 s too late: Oates+09, Perley+10

t=60s

Friday, October 11, 13

13

III. Rapid Response Science with *Less* Instrument

• attractive idea in age of limited support

Bruce Grossan • Moscow 2013

• After *Swift*, only SVOM will do optical IDs

- currently uncertain and delayed ...

- After *Swift*, only SVOM will do optical IDs
 - currently uncertain and delayed ...
- Replacement would provide IDs for community, with fast-response, new science

- After *Swift*, only SVOM will do optical IDs
 - currently uncertain and delayed ...
- Replacement would provide IDs for community, with fast-response, new science
- Possible?

Less Instrument - Why?

swift \$250M + launch

Bruce Grossan • Moscow 2013

Less Instrument - Why?

- Support for expensive missions unlikely
 - need to make instrument small & mission inexpensive

swift \$250M + launch

Bruce Grossan • Moscow 2013

Less Instrument - Why?

- Support for expensive missions unlikely
 - need to make instrument small & mission inexpensive
- Launch opportunities exist:
 - "piggyback" opportunities like UFFO (e.g. Resurs-B Nucleon have been discussed)
 - ISS
 - private???

Switt \$250M + launch

Bruce Grossan • Moscow 2013

Less Instrument - Why?

- Support for expensive missions unlikely
 - need to make instrument small & mission inexpensive
- Launch opportunities exist:
 - "piggyback" opportunities like UFFO (e.g. Resurs-B Nucleon have been discussed)
 - ISS
 - private???
- ...But these do not point,

=> sensitive exposures impossible
=> Arc sec pointing stabilized spacecraft very expensive (few per decade).

Swift \$250M + launch

Solution Part I. Beam-Steering for Rapid Response

< 1" Pointing Required (2" pixels)

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 - Finite Problem!

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

Friday, October 11, 13

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

Friday, October 11, 13

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

Friday, October 11, 13

- < 1" Pointing Required (2" pixels)
- Down-looking spacecraft typically ~ 1' stabilization
 Finite Problem!
- Active feedback control for mirror can stabilize pointing
- Control feedback? --- From centroids of stars...

Friday, October 11, 13

- Star centroids: SNR> 8 gives $\sigma < 0.1$ pix (0.2")
- $N_{stars} \ge 68/sq. \ deg. @ R > 14 5.5 \ stars/ 17' \ field$
- EMCCD + 30 cm aperture gives R=14 @ 10 σ in < 20 ms !!!! (*)
 - $\sigma{=}0.13"$ / 20 ms but many more stars R > 14 and 1/N^{1/2} reduction in $\sigma{...}$

- Star centroids: SNR> 8 gives $\sigma < 0.1$ pix (0.2")
- $N_{stars} \ge 68/sq. \ deg. @ R > 14 5.5 \ stars/ 17' \ field$
- EMCCD + 30 cm aperture gives R=14 @ 10 σ in < 20 ms !!!! (*)
 - $\sigma{=}0.13"$ / 20 ms but many more stars R > 14 and 1/N^{1/2} reduction in $\sigma{...}$

- Star centroids: SNR> 8 gives $\sigma < 0.1$ pix (0.2")
- $N_{stars} \ge 68/sq. \ deg. @ R > 14 5.5 \ stars/ 17' \ field$
- EMCCD + 30 cm aperture gives R=14 @ 10 σ in < 20 ms !!!! (*)
 - $\sigma{=}0.13"$ / 20 ms but many more stars R > 14 and 1/N^{1/2} reduction in $\sigma{...}$
 - => No Problem for wide range of frame rates, apertures

IV. Conservative & Accurate Rate Predictions for Small Instruments

IV. Conservative & Accurate Rate Predictions for Small Instruments

(because useful = large N)

Bruce Grossan • Moscow 2013

Use **Data**, Not Assumptions, for Realistic Predictions

- Detection dependent on actual light curves & background
 - because trigger by peak **SNR**, not e.g., fluence
- For scaled down BAT, should be able to make perfect detection predictions for any scale smaller than 1:1 -- because SNR ~ A^{1/2}
 - Run trigger algorithm on actual BAT history
 - Scale SNR for reduced collecting area
 - Results much more accurate than assumed spectra & light curves
- Predictions depend on Swift operations history (point restrictions, transmission scheduling, etc.)
 --- But then. rates are realistic for a real mission!

BAT 64 ms data

 σ from background

- Signal from trigger time window
- Noise from background window
- Simple algorithms PLUS temporal "model" of background (geomag maps, monitors, etc.)

Triggering & Detection

BAT location algorithm must be triggered

- Rate Trigger fluctuation > N sigma
- Image Trigger good for long, faint bursts only
- Used Simplest Rate Trigger:
 - Used 64 ms data channels 1-3 summed, (15-100 kev), the highest S/N combination
 - Used time windows of 0.25, 0.5, 1, 2, 4, 8 s
 - Used **trailing** average background t-19.2 to t-6.4 s
- Determine Max SNR in all windows
- After trigger, detection for all SNR>5 sources
 - Simulations by Paul Connell
 - location quality ~ 1/SNR

Triggering & Detection

BAT location algorithm must be triggered

- Rate Trigger fluctuation > N sigma
- Image Trigger good for long, faint bursts only
- Used Simplest Rate Trigger:
 - Used 64 ms data channels 1-3 summed, (15-100 kev), the highest S/N

andradia

- NOT sophisticated, but yielded very good results, high detection rate
- » image trigger may boost rates few %, may be problem on small instrument
- Determine Max SNR in all windows
- After trigger, detection for all SNR>5 sources
 - Simulations by Paul Connell
 - location quality ~ 1/SNR

V. OPTICAL/IR RATE PREDICTION

- Accurate rate predictions for any instrument less sensitive than Swift
 - ... or very robust *lower* limits for more sensitive instruments
- Can use actual X/ray and Optical 2-variable rate predictions

UVOT and BAT Early Response Sample"

- GRBs 060502 081007
 - UVOT responded uniformly: 100 s exposure, W (open) filter
 - W exposures begin t~ 70-150 s
- Require $< t_{mid} > < 170 s$
- Defines "Early Emission & Response" Sub-sample: no image triggers, ground analysis, etc.

NGRB	224	NGRB_rly	209
RGRB(yr ⁻¹)	92	RGRB_rly (yr ⁻¹)	86
Robs_uvot_rly (yr-1)	38	Rdet_uvot_rly (yr-1)	18

Bruce Grossan • Moscow 2013

Optical Detection

- Most current data have no peak
- With sensitivity ≥ UVOT early, can determine a peak
- Early detection declared if 10 s sensitivity sufficient to detect UVOT early measurement.
- Note: Optical rates based on 10 s exposure time (but higher time resolution possible).

peak here

60s

Flux (mag) -->

t --->

VI. Rate Prediction Results

X-ray Rates vs. Collecting Area

- Little sensitivity for A > 1000 cm²
 - X-ray camera 5X
 smaller than Swift
 still has good rate!
- Conservative Values

 real-time simple
 rate triggers only

Bruce Grossan • Moscow 2013

EARLY OPTICAL BRIGHTER FOR BRIGHT GRBS?

- There is a correlation of X_fluence & Optical afterglow brightness
 - --w/significant spread

EARLY OPTICAL BRIGHTER FOR BRIGHT GRBS?

- There is a correlation of X_fluence & Optical afterglow brightness
 - --w/significant spread

• True for Swift Early?

Bruce Grossan • Moscow 2013

Swift Early Opt Detection-Xray Correlation

- Detection rate weakly dependent on on fluence.
 - Error bars show marginal effect (1 sig = 30% center bin; 100% ends).
 - spread in correlation dominates correlation

Bruce Grossan • Moscow 2013

Swift Early Opt Detection-Xray Correlation

Seems like there is great variation in early optical
--- Why?

Early Optical Rates vs. Area

- Sensitive to Diameter ! (Much less then X rates)
- Threshold ~ 800 cm² (1/6 the area of Swift!!!)
- Based on *average* fluxes - conservative!

 Includes operational constraints!

31

Early Optical Rates vs. Area

- Sensitive to Diameter ! (Much less then X rates)
- Threshold ~ 800 cm² (1/6 the area of Swift!!!)
- Based on *average* fluxes - conservative!

 Includes operational constraints!

Bruce Grossan • Moscow 2013

BUT WE CAN DO BETTER!

Better Optical Detectors

- We went from 18/yr to 13/yr because we went down to 10 s exposures ... any way to recover?
- YES! Swift has TERRIBLE Q.E.
- Use an EMCCD for 4X as many photons!
 1.1 mag more sensitive
- Back up to 16 GRB Optical Detections/yr. in short 10 s exposures.

Better Optical Detectors

- We went from 18/yr to 13/yr because we went down to 10 s exposures ... any way to recover?
- YES! Swift has TERRIBLE Q.E.
- Use an EMCCD for 4X as many photons!
 - 1.1 mag more sensitive
- Back up to 16 GRB Optical Detections/yr. in short 10 s exposures.

Better Optical Detectors

- We went from 18/yr to 13/yr because we went down to 10 s exposures ... any way to recover?
- YES! Swift has TERRIBLE Q.E.
- Use an EMCCD for 4X as many photons!
 1.1 mag more sensitive
- Back up to 16 GRB Optical Detections/yr. in short 10 s exposures.

NIR & Extinguished GRB

- NIR broad-band camera is 2.8 mag more sensitive than UVOT in W for –0.75 spectrum⁽¹⁾
 - 0.9 1.8 µm band; zodical background; H2RG sensor⁽²⁾
 - ALL UVOT sources detected with an additional 5 mag Av.
- Perley+09: Many GRB extinguished!
 - 29 Swift GRBs, 15 detected by UVOT,
 - 8 MORE detected in NIR
 - => 8/15 boost in rate with NIR!
- > 25 NIR Detections/yr.
 - 1024 cm² X-ray detector, 6.5 σ

1. Rykoff, et al., 2009 2. Q.E. from Beletic 08

Rapid Color Information

Dynamic Dust via Dynamic Color Measurement

Sub-60 s: allows dynamic dust • vaporization measurement

Friday, October 11, 13

BUT WE CAN DO BETTER!

Improving on BAT

Aasque codé (40% transparence)

Champ de vive : 2 su

lindage passif pour bloquer le fond X

- BAT uses CZT
 - Low-Energy Threshold 15 keV
- SVOM team using CdT cooled to -20 C
 - Low-Energy Threshold 4 keV !!! (1)
 - Factor of 5.8 in photons!!!
- (Don't know instrumental background at LE, but DXRB is less steep, so significant improvement must result.)
 - But not included in rate predictions here due to background uncertainty.

(1) 2012, Philippe Laurent, CEA, private comm.

Friday, October 11, 13

Other Instruments

- If you are not exactly Swift-like, you must adjust for background, duty cycle, etc. etc.
- ISS high background regions passage=> duty cycle for typical X-ray camera is ~ 50% (private comm., Motoko Serino, 2012).
- UFFO-pathfinder 89° orbit
 - Swift decay time for activation after high background region ~ 1000 s (Greiner+09). After four belt passages, only 1000 s remains. I find duty cycle ~ 20% of Swift

38

- 191 cm² X-ray camera, FOV .84 * BAT => 4.3 GRB yr^{-1} , SNRtrig =6.5
- 10 cm optical aperture => ~ 1 optical detection yr⁻¹

Future

- Lots of instrument work e.g. simulations of feedback control, optimum frame rate...
 - should include more detailed information on S/C motion
- Estimate LE background to see improvement for LE response
- Find uniform samples for shorter UVOT exposures
 - should be able to re-reduce UVOT to 10 s, 1 s time resolution (but I have not checked on that yet.)

 "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr
 - 25 NIR detections/yr

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr
 - 25 NIR detections/yr
- Science Results:

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr
 - 25 NIR detections/yr
- Science Results:
 - source of IDs for community

X-time res., spectra inferior, but **MOST OF SWIFT OPTICAL ID RATE**

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr
 - 25 NIR detections/yr
- Science Results:
 - source of IDs for community
 X-time res., spectra inferior, but MOST OF SWIFT OPTICAL ID RATE
 - Statistical view of 1-60 s after trigger for first time
 >NEW RAPID-RESPONSE SCIENCE (w/ "old" Swift population)

- "Early Emission" complicated: prompt emission + transition + flares/peaks + signatures of emission+?
 - Needs to be statistically measured
- Early Emission Measurement Feasible w/NGRG
 - 1000 cm² X + 30 cm optical/IR Aperture, 10 s exposures:
 - 16 opt detections/yr
 - 25 NIR detections/yr
- Science Results:
 - source of IDs for community
 X-time res., spectra inferior, but MOST OF SWIFT OPTICAL ID RATE
 - Statistical view of 1-60 s after trigger for first time
 >NEW RAPID-RESPONSE SCIENCE (w/ "old" Swift population)
 - NIR information on extinction, dynamic dust evaporation

Thank You!

If you are going to VKO for ~ 9: 30 AM flight, please contact me. -Bruce