The early bursty Universe

Umberto Maio Marie Curie Fellow at OATS

in collaboration with: M. Petkova, B. Ciardi, K. Dolag, L. Tornatore, S. Khochfar, J. Johnson, F. lannuzzi,

M. A. Campisi, R. Salvaterra, N. Yoshida, P. Creasey

Outline

- Introduction 1
 - Motivations
 - General overview

Method 2

- Molecules and metals
- Chemistry and cooling
- 3 Simulations
 - PopIII and II, SFR, Z
 - LF, GRBs, Non-G, RT

Umberto Maio

The End The early bursty Universe

Δ

Motivations General overview

Motivations

Goal: Primordial structure formation and transition from the first metal-free 'PopIII' star formation regime (high-mass or low-mass stars?) to the common, metal-enriched 'PopII-I' one (low-mass 'solar' stars): \rightarrow What is the formation epoch of first objects? \rightarrow What is the role of molecules and metals in the early ISM? \rightarrow How relevant is PopIII for star formation and metal spreading? \rightarrow What are the effects of different IMEs on SER? \rightarrow What are the implications for early observables (LF, GRB)? \rightarrow What are the effects of the underlying matter distribution? \rightarrow What are the effects on cosmic re-ionization?... Requirements: Study the chemical properties of cosmic medium during cosmological evolution.

Motivations General overview

Overview of structure formation

The Universe is supposed

- to expand at a rate $H_0 \simeq 68 \text{ km/s/Mpc}$
- to have flat geometry (zero spatial curvature);
- to consist of dark matter, baryonic matter and cosmological constant/dark energy.

Cosmological parameters (Planck, 2013): $\Omega_{0,DM} = 0.26, \ \Omega_{0,b} = 0.04, \ \Omega_{0,\Lambda} = 0.7$ $\Rightarrow \Omega_{0,tot} = 1;$ $\sigma_8 = 0.83, \ n = 0.96$

Standard: $H_0 = 70 \text{ km/s/Mpc}$, $\Omega_{0,\Lambda} = 0.7$, $\Omega_{0,DM} = 0.26$, $\Omega_{0,b} = 0.04$, $\sigma_8 = 0.9$, n = 1.

Motivations General overview

Theoretical scenario:

- Cosmic structures originate from the growth of matter perturbations at early times (inflation), in an expanding Universe.
- Baryonic structures form from in-fall and cooling of gas into DM potential well.
- Eventually, a cloud can form if the radiative losses are sufficient to make the gas condense and fragment:

$$t_{cool} = rac{3}{2} rac{nkT}{\mathcal{L}(n,T)} \ll t_{\rm ff} = \sqrt{rac{3\pi}{32G
ho}}$$

At early times, the cooling function is dominated by molecules ! After pollution from formed (baryonic) structures (→ *chemical feedback*) metals dominate.

Motivations General overview

primordial environments...

Small dark-matter haloes

barkana& Loeb, 2001

H-cooling haloes: $T_{vir} \ge 10^4 \text{ K}$

H₂-cooling haloes: $T_{vir} < 10^4 \, K_{\odot}$

Molecules and metals Chemistry and cooling

...hosting molecular and metal evolution in their ISM

For a complete picture \longrightarrow necessity to follow gravity and hydrodynamics *coupled* to molecular evolution and metal production during cosmic time (e.g. Galli& Palla, 1998; Abel et al., 1997)

- molecules determine <u>first</u> structure formation
- metals determine subsequent structure formation
- stellar evolution determines <u>timescales</u> and yields

Following and implementing metal and molecule evolution in numerical codes (N-body/SPH Gadget) required

(Yoshida et al., 2003; Tornatore et al., 2007; Maio et al., 2007, 2010)

イロト イヨト イヨト イヨト

Introduction Method Mole Simulations Chen The End

Molecules and metals Chemistry and cooling

Gas cooling function and the role of metals \longrightarrow

In primordial regimes, the main coolants are H, He and molecules (H_2 and HD).

In metal enriched ones, metal fine-structure transitions from C, O, Fe, Si (dominant over molecules at low temperatures).

(Maio et. al, 2007)

Cooling leads the gas in-fall into DM potential wells.

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Z_{crit}: transition from popIII to popII-I star formation

We study the effects connected to the existence of a critical metallicity Z_{crit} (e.g. Bromm & Loeb, 2003; Schneider et al., 2003) and the transition from popIII SF ($Z < Z_{crit}$) to popII-I SF ($Z \ge Z_{crit}$).

In order to address such issues, we perform several numerical simulations of early structure formation adopting different values for Z_{crit} and exploring different scenarios.

Simulation set-up

(Maio et al., 2010, 2011b, Maio & lannuzzi, 2011; Maio, 2011; Maio & Khochfar, 2012)

- standard-∧CDM cosmology (1,7,14,43,143Mpc a side);
- molecular and metal chemistry;
- assume $Z_{crit} = (10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}) Z_{\odot}$
- assume different popIII IMFs (→ top-heavy/Salpeter)
- assume different matter distributions (→ G vs non-G)

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Primordial environments

1 Mpc -

A look into the first structures ($z \simeq 10$)

credit simulation: U. Maio credit animation: P. Creasey

∃ 990

Umberto Maio The early bursty Universe

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Temperature evolution

100 Mpc ----

Structure evolution (down to $z \simeq 0$)

Umberto Maio

The early bursty Universe

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Metal enrichment in the Universe

Z (absolute) O (absolute)

Fe (absolute)

Total enrichment

O enrichment

Fe enrichment

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Metal enrichment led by stellar evolution: SNII/PISN \longrightarrow O, SNIa \longrightarrow Fe

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (1/15): effects for different Z_{crit}

box: 1Mpc³; popIII IMF: top-heavy with slope=-1.35, range=[$100M_{\odot}$,500M $_{\odot}$]

(Maio et al., 2010)

Umberto Maio The early bursty Universe

E ► < E ►

크

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (2/15): polluting the surrounding medium

Phase diagrams with color contours for enriched gas

 $(Z_{crit} = 10^{-4} Z_{\odot}, \text{ box side} = 1 \text{ Mpc})$

Metals produced by stellar evolution pollute the surrounding, pristine gas with an *"inside-out"* mode. (Maio et al, 2011b)

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (3/15): metallicity distribution

Metallicity distributions with color contours for enriched gas at z = 11

At $z \sim 11$, after $\sim 10^8$ yr from the onset of star formation, most of the enriched mass has $Z > Z_{crit}$. (Maio et al, 2011b)

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・

크

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (4/15): effects on the surrounding

 $\label{eq:Radial fractions of PopII and PopIII gas in the most massive halo on scales $$\sim 10-1000 \, pc$ (physical)$$ (Maio et al., 2011b) $$$

イロト イヨト イヨト イヨト

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (5/15): changing the popIII IMF

PopIII range (Salpeter IMF - top-heavy IMF)

SN range (Salpeter IMF)

Mass ranges for popIII IMF and/or massive SN have significant impacts:

 $\label{eq:Larger} \mbox{Larger masses} \rightarrow \mbox{Shorter stellar lifetimes} \rightarrow \mbox{Earlier enrichment} \rightarrow \mbox{Shorter "popIII epoch"}$

(Maio et al., 2010)

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (6/15): sSFR - early bursty Universe

Umberto Maio

The early bursty Universe

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (7/15): UV luminosity functions

For each galaxy: $L_{\lambda} = L_{\lambda}^{\text{II}} + L_{\lambda}^{\text{III}}$ in L5, L10, L30

PopII-I SEDs from Starbust99 (Vazquez & Leitherer, 2005). PopIII SEDs from Schaerer (2002). No dust assumed

Observational data points from:

Bouwens et al., 2007 (circles); z=6 Bouwens et al., 2011 (circles); z=7-8 McLure et al., 2010 (triangles); z=7-8 Oesch et al., 2012 (squares); z=8

Fit: Su et al., 2012 (solid line); z=6.

Resulting <u>slope</u>: ~ -2 consistent with HUDF data

(Dunlop et al., 2013, Dayal, Dunlop, Maio, Ciardi, 2013)

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (8/15): Implications for high-z GRB hosts

Tracing LGRBs from the SFR of their host galaxies

Differential GRB hosting probability $\rightarrow dP = \frac{dN_{GRB}(\text{Log}_{10}(SFR[M_{\odot}/yr]))}{N_{GRB} d\text{Log}_{10}(SFR[M_{\odot}/yr])}$

Large objects (high SFR) are rarer than small objects (low SFR): high-z GRBs are more likely found in intermediate-, low-size objects!

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (9/15): UV luminosities of GRB hosts

Most high-z GRB hosts are primordial faint galaxies (they lie below current HST, VLT detection limits)

Most ionizing photons are produced in faint galaxies (at z = 6 and z = 8)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (10/15): Statistical properties of GRB hosts

Data from: Tanvir et al., 2012 (SFRs), Kawai et al., 2006 (Z)

See Salvaterra, Maio, Ciardi, Campisi, 2013

Umberto Maio The early bursty Universe

(本語) (本語) (

< 17 ×

æ

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (11/15): Physical relations for GRB hosts

Umberto Maio The early bursty Universe

크

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (12/15): PopIII-GRB rates and hosts

$$R_{GRB} = \frac{\gamma_b \zeta_{BH} f_{GRB}}{4\pi} \int_z \dot{\rho}_\star \frac{dz'}{(1+z')} \frac{dV}{dz'} \int_{L_{th}(z')} \Psi(L') dL'$$

 R_{GRB} : gamma-ray burst rate, γ_b : beaming factor, ζ_{BH} : fraction of expected BH (IMF), f_{GRB} : fraction of expected GRB from collapse onto a BH (Swift), $\dot{\rho}_{\star}$: star formation rate density (simulation), $\Psi(L)$: Schechter luminosity fct. (assumption), L_{th} : instrumental sensitivity (Swift) PopIII IMF: top-heavy over [100, 500]M_{\odot} PopIII IMF: Salpeter over [0.1, 100]M_{\odot}

 $\begin{array}{l} \mbox{Detectable fraction (by BAT/Swift) of PopIII GRBs:}\\ \sim 10\% \mbox{ at } z > 6\\ \gtrsim 40\% \mbox{ at } z > 10\\ \mbox{of the whole population} \end{array}$

PopIII-GRB-hosts:

the highest probability of finding PopIII GRBs is in hosts with $M_{\star} < 10^7 \, M_{\odot}$ and $Z \gtrsim Z_{crit}$ (efficient pollution)

Umberto Maio

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (13/15): primordial matter distributions and Non-Gaussianities

Basic assumption: Gaussian perturbations → evidences for <u>non-Gaussianities</u> (CMB). Primordial non-Gaussianities are introduced via (Salopek & Bond, 1990)

$$\Phi = \Phi_L + \frac{\textbf{f}_{NL} \left(\Phi_L^2 - < \Phi_L^2 > \right)$$

 Φ is the Bardeen potential (Newton potential at sub-Hubble scales), Φ_L is the *linear* (Gaussian) part, and f_{NL} the non-Gaussian parameter.

credit: Planck

 $\label{eq:hl} \begin{array}{l} f_{\rm NL} = 0, \, 10, \, 50, \, 100, \, 1000 \\ \text{box sides: } 0.5 \, \text{and } 100 \, \text{Mpc/h} \\ \text{number of particles: } 2 \times 320^3 \\ \text{gas mass resolution: } 42 \, M_\odot/h \\ \text{and } 3 \times 10^8 \, M_\odot/h \end{array}$

See: Maio & Iannuzzi (2011); Maio (2011)

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (14/15): Non-G and the cosmic web

 $f_{\rm NL}=0$

f_{NL}=1000

æ

PopIII and II, SFR, Z LF, GRBs, Non-G, RT

Results (15/15): Non-G and the GRB rate

Maio, Salvaterra, Moscardini, Ciardi (2012)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

르

Summary...

- We have presented results from cosmological N-Body, hydrodynamical, chemistry and radiative simulations
- We studied the early stellar populations, the transition from popIII to popII-I one, and its interplay with the surroundings.

Conclusions...

- Early ($z \sim 15 20$) metal enrichment from the first stars is very strong: the popIII/popII transition is very rapid ($\sim 10^7 10^8$ yr), and the early contribution to the total SFR is $\sim 10^{-3}$ for top-heavy popIII IMF and $\sim 10^{-2} 10^{-1}$ for Salpeter-like popIII IMF (after only $\Delta t \sim 10^8$ yr from SF)
- Radiation from massive popIII stars can easily dissociate molecules (where not shielded), heat surrounding gas inhibiting further SF and possibly affect the IGM thermal state
- Results are not very sensitive to the assumed Z_{crit}, popIII metal yields, IMF slope, primordial non-Gaussianities, etc.

Thank you!

maio@oats.inaf.it

Marie Curie Fellow European Union FP7/2007-2013, Actions, Grant Agreement n. 267251, Marie Curie Incoming Mobility Fellowships, Astronomy Fellowships in Italy (AstroFit)

Umberto Maio The early bursty Universe

Umberto Maio The early bursty Universe

Extra: cooling functions...

▲ 臣 ▶ | ▲ 臣 ▶ |

æ

Resolving the gas in-fall: evolution in the ρ – T space

Extra: star formation ratio (box side = 1 Mpc)...

▲ 臣 ▶ ▲ 臣 ▶ …

< A

æ

Extra: clumping factors (box side = 1 Mpc)

Extra: Mass functions (larger simulations)

Umberto Maio The early bursty Universe

(ロ) (部) (E) (E) (E)

Extra: SFR (larger simulations)

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E ► ★ E ►

3

Extra: Metallicity evolution (larger simulations)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Results: metallicity evolution

Dotted lines: maximum metallicity.

Dot-dashed lines: average metallicity over the enriched particles.

Solid lines: average metallicity over the whole box.

Dashed lines: average individual metallicities over the whole box.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

æ

(e.g., Maio et al, 2010)