

The Nuclear Compton Telescope

A balloon-borne gamma-ray spectrometer, polarimeter, and imager

Andreas Zoglauer

for the NCT collaboration

The NCT Collaboration:

S.E. Boggs (PI), A. Lowell, C. Kierans, J. Tomsick, A. Zoglauer (UCB/SSL) M. Amman (LBNL)

BIG BILL

H.-K. Chang, J.-L. Chiu, C.-Y. Yang, J.-R. Shang, C.-H. Tseng (NTHU, Taiwan), C.-H. Lin (AS, Taiwan), Y.-H. Chang, Y. Chou (NCU, Taiwan) P. Jean, P. von Ballmoos (IRAP, France)

NCT is supported through grants by NASA

NCT shortly before launch 2009

Overview: Instrument & Campaigns

Instrument:

- Balloon-borne Compton telescope
- Energy range: 0.2 several MeV
- 12 high-purity Ge double-sided strip detectors , 2 mm strip pitch
- Energy resolution: 1.5-3.0 keV FWHM
- Depth resolution: ~0.5 mm FWHM
- Angular resolution: up to ~4° FWHM
- Large field-of-view: almost 1/4 of sky

Balloon campaigns:

- 2 GeD prototype flew from Ft. Sumner, NM on June 1st, 2005
- 10 GeD instrument flew from Ft. Sumner, NM on May 17th, 2009
- Failed launch from Alice Springs, Australia on April 29th, 2010
- Winter 2014/15: Antarctica campaign
- 2016 & 2018: New Zealand campaigns

Overview: Science Goals

Unravel the mysteries of how the elements are created & understand the most energetic and violent explosions in our Universe

- Map Galactic nucleosynthesis
 - ²⁶Al (1.809 MeV), ⁶⁰Fe (1.173, 1.333 MeV), ⁴⁴Ti (1.157 MeV)
- Determine GRB polarization
- Map positron annihilation (511 keV) from the Galactic center and disc
- Observe compact objects and determine their polarization (if possible)
 - AGN
 - Black holes
 - Pulsars

10/9/2013

Operating Principle

of NCT-style Compton telescopes

- Photons interact multiple times in active detector (here: Ge).
- The interaction sequence can be determined from information such as scatter angles, absorption probabilities, scatter probabilities

- The origin of a single not-tracked event can be restricted to the so called "event circle".
- The photon originated at the point of all overlap.

10/9/2013

Compton Telescopes: From COMPTEL to NCT

30+ years development

r₂, E₂ r1. E. 15 mm _ ~78 m<mark>n</mark> T3, E.

CGRO/COMPTEL:

- ~40 cm³ resolution
- ΔE/E ~10%
- Up to 0.4% efficiency

NCT:

- 1 mm³ resolution
- $\Delta E/E \sim 0.2-1\%$
- Up to 16% efficiency
- background rejection
- polarization

Improved performance with a fraction of the mass and volume

The Germanium Detectors

- Size: 8 x 8 x 1.5 cm³
- 37 orthogonal strips per side
- 2 mm strip pitch
- Operated as fully-depleted p-i-n junctions
- a-Ge and a-Si surface layers
- Excellent spectral resolution: 0.2-1%
 FWHM
- Excellent depth resolution: 0.5 mm FWHM
- 14 have been fabricated at LBNL
 - 10 have been used for the 2009
 balloon flight, 12 will be used for the
 2014 campaign

<u>م</u> ع	200	FWHM: 1.39 keV Peak: 498 cnts	FWHM: 1.39 keV Peak: 1032 cnts -	FWHM: 1.43 keV Peak: 1044 cnts	FWHM: 1.35 keV Peak: 1032 cnts	FWHM: 1.39 keV Peak: 1091 cnts	FWHM: 1.26 keV Peak: 1130 cnts	FWHM: 1.43 keV Peak: 1038 cnts	FWHM: 1.39 keV Peak: 1031 cnts -
C(C	100	ſ						- - -	
DC1 counts	0 200	FWHM: 1.20 keV Peak: 553 cnts	FWHM: 1.10 keV Peak: 982 cnts	FWHM: 1.24 keV Peak: 1077 cnts	FWHM: 1.31 keV Peak: 1107 cnts	FWHM: 1.34 keV Peak: 1097 cnts	FWHM: 1.33 keV Peak: 1133 cnts	FWHM: 1.32 keV Peak: 960 cnts	FWHM: 1.26 keV Peak: 1014 cnts
	0	FWHM: 1.15 keV Peak: 546 ants	FWHM: 1.08 keV Peok: 1016 ents	FWHM: 1.22 keV Peok: 1051 cnts	FWHM: 1.21 keV Peok: 1020 cnts	FWHM: 1.17 keV Peck: 1087 ente	FWHM: 1.23 keV Peak: 1087 cnte	FWHM: 1.22 keV Peok: 1021 cnts	FWHM: 1.24 keV Peok: 1023 onts
DC2 counti	100								
DC3 counts	200	FWHM: 1.10 keV Peak: 661 cnts	FWHM: 1.15 keV Peak: 1000 cnts	FWHM: 1.13 keV Peak: 1097 bnts	FWHM: 1.19 keV Peak: 1141 bnts	FWHM: 1.16 keV Peak: 1071 cnts	FWHM: 1.13 keV Peak: 1152 onts	FWHM: 1.12 keV Peak: 1061 cnts	FWHM: 1.24 keV Peak: 1025 cnts
	0 200	FWHM: 1.47 keV Peak: 706 cnts	FWHM: 1.31 keV Peak: 1044 cnts	FWHM: 1.34 keV Peak: 1037 cnts	FWHM: 1.37 keV Peak: 1044 ents	FWHM: 1.41 keV Peak: 1070 cnts	FWHM: 1.45 keV Peak: 1173 cnts	FWHM: 1.42 keV Peak: 978 cnts	FWHM: 1.45 keV Peak: 994 cnts
Single- <u>pixel</u> spectra (⁵⁶ Co) of one • excellent GeD spectroscopy					ne detec	tor			
DC5 counts	200	FWHM: 1.16 keV Peak: 673 cnts	FWHM: 1.12 keV Peak: 1065 cnts	^{F₩t} ● gO ● plu	od unifo us full 3D	rmity positior	ning		keV ants -
	n	المستعدين الم			المصعبية			المسفرية	

The Shield

- Goal: Veto dominating atmospheric background component
- Material: CsI (previous flights: BGO)
- Size: ~48 x 24 x 6 cm³
- Weight: ~21 kg
- Veto threshold: ~80 keV
- 6 shields have been build by IRAP, France for 2014 and later balloon flights

One CsI shield module

The 2005 Fort Sumner Prototype Flight

System: 2-detector prototype

Goal:

Measure something at floating altitude (two detectors not enough to detect Crab)

Key result: Background at Balloon Altitudes

- 6 hour prototype flight from Ft. Sumner, New Mexico on June 1st, 2005.
- Measurement of gamma-ray background at balloon floating altitudes and comparison with simulations

The 2009 Fort Sumner Campaign

Goal: Verify detection principle in a space radiation environment by detecting the Crab pulsar

Balloon will inflate to ~1 million m³ at floating altitude

Parachute

Tiny balloon illuminated by the sun

Roughly 38 hours flight!

Minor problems with rotor as well as the power supply during night and shortly before cut off

UFO sighted!

Mobile UPI

Alien invasion bubble burst

About UPI

Home	Top News	Entertainment	Odd News	Sports	Business	Science

You are here: Home / Odd News / Arizona UFO identified as NASA balloon

UPI en Español

Odd News

View archive | RSS Feed 🔯

Mv Account

Search: S

Arizona UFO identified as NASA balloon

sponsorship	🖹 Prir	it 🚸	Email	Ņ	Comments	← Share	toolbar sponsorship	Advertise
-------------	--------	------	-------	---	----------	---------	------------------------	-----------

Published: May 19, 2009 at 5:54 PM Order reprints

PALESTINE, Texas, May 19 (UPI) -- Experts said a UFO spotted over Arizona was a research balloon launched by the U.S. space agency to measure gamma ray emissions.

Bill Stepp of the Columbia Scientific Balloon Facility in Palestine, Texas, said the UFO reported Monday was a 4,000-pound balloon sent to measure the gamma ray emissions at high altitudes by the National Aeronautics and Space Administration, The Arizona Republic reported Tuesday.

Stepp said the balloon was sent out at about 7:30 a.m. Sunday from Fort Sumter in New

Related Searches

UPIU - University Media Alliance

- " "gamma ray emissions" search results
- " "research balloon" search results
- "space agency" search results

Related Stories

- * UFO group opens archives to public
- "Flying saucers' photographed in London
- * Kansas photo raises UFO questions
- Report: Pilots spotted UFO over Greece
- Denmark releases UFO archives
- " Ex-official: Britain shot at UFOs

Status after landing:

- Cryostat OK, detector remained cooled
- Damage to the gondola and to the solar cells
 - > Easily repairable...

Summary:

- ~22 hour of good flight data
- Qualified for a long duration balloon flight

Data Analysis Tool

 \widehat{m}

MEGAlib

The Medium-Energy Gamma-ray Astronomy library

Provides simulation, calibration, and data analysis tools for hard X-ray and soft-tomedium-energy gamma-ray detectors/cameras/telescopes

Very flexible design allowing its easy application to different projects and missions, such as MEGA, ACT, NCT, COMPTEL, GRI, GRIPS, NuSTAR, ASTRO-H, HEMI, DUAL, hadron therapy simulations, X-FEL detectors, etc.

For more details see: http://megalibtoolkit.com

The NCT Data Analysis Pipeline

Analysis Challenge 1: Calibration

- **1. Energy calibration** taking into account:
 - charge sharing between strips
 - charge loss between strips
 - cross-talk between strips
- 2. Strip pairing if more than one interaction happened in the detector

Analysis Challenge 1: Calibration

3. Depth calibration by considering the different charge collection times for electrons and holes as a function of interaction depth as well as the timing differences between strips

Analysis Challenge 2: Event reconstruction

Main goals of event reconstruction:

- Reconstruct the path of the original photons
- Find the parameters of the original Compton interaction
- Determine if the event originated from a completely absorbed non-background photon

Analysis Challenge 2: Event reconstruction

Basic data:

• All measured information: N × (x,y,z,E)

Enhanced data:

• Redundant scatter angles:

Angles φ_{I} , ϑ_{k} , ϑ_{I} can be determined via geometry and via Compton kinematics (d φ , d ϑ -criterion)!

- Absorption probabilities along d_I, d_m
- Klein-Nishina scatter probabilities
- Probabilities that the above are measured with the current geometry.

Approaches:

- Classic CSR based on χ^2 method
- Neural Network

Analysis Challenge 3: Event Selections

Images show backprojections only

Left: All data (with time cut) - no event selections

Dominated by atmospheric background

Right: Optimized event selections

- Dominated by emission from "above"
 - Cut on energy, earth horizon distance, event reconstruction quality factor, Compton scatter angle
 - But at the cost of a reduced effective area!

Challenge 4: Image Deconvolution

Deconvolution = Determine image by "undoing" the measurement process

 $D(\vec{d}) = T(\vec{d}; \chi, \psi) \times I(\chi, \psi) + B(\vec{d})$ measured detector sky detector distribution background response data

Problem:

No unique solution for recovering "I"

Some iterative approaches:

- Maximum-likelihood expectation-maximization
- Maximum-entropy methods
- Multi-resolution approaches
- Stochastic origin ensembles

Crab Observation

Data:

- 7 hours at floating altitude of 40 km while Crab was in the field-of-view of NCT.
- Energy range: 0.25-1.5 MeV (excluding 511-keV background line)
- Event selections: Earth horizon cut, a Bayesian quality factor cut, and a cut on the Compton scatter angles (φ < 90°)

Interpretation:

 The Crab is clearly visible with a detection significance of ~6 sigma

Alice Springs Campaign – the "Mishap"

Location:

• Alice Spring, Australia – ideally suited to observe Galactic Center region

Primary science goals:

• Map galactic e⁺-e⁻ annihilation as well as ²⁶Al emission

- Unfortunately NCT's launch attempt on April 29th, 2010 failed
- CSBF gondola release mechanism failed on launch resulting in a crash
- Fortunately, the detectors and electronics chains were relatively unharmed

NCT 2014 – the Upgrade

Key changes:

- 1. New lightweight gondola
 - Enables ULDBs (ultralong duration balloon flights)

NCT 2014 – the Upgrade

Key changes:

- 1. New lightweight gondola
- 2. New shielding: CsI instead of BGO shields
 - More space available for detectors
- 3. Allows for: Improved detector geometry:
 - Improved field-of-view, better low-energy response, better polarimetry
- 4. Cryo-cooling instead of liquid Nitrogen cooling
 - Enables long and ultra-long duration balloon flights

The 2014/15 Antarctica Campaign

Flight type: LDB

Duration: up to 50 days $12/2014 \rightarrow 1/2015$

Main technical goal:

 Long duration test of upgraded system and real-time analysis (for GRBs)

Main science goals:

- Gamma-ray burst polarization
- Nuclear-line science in Carina region

Observable Sources Antarctica Campaign

The 2016 & 2018 New Zealand Campaigns

Flight type: Super-pressure ULDB

Anticipated launch dates: 2016 & 18

Duration: Up to 100 days – multiple times around the world

Main science goals:

- Nuclear line science in Galactic Center region
- Gamma-ray burst polarization

Observable Sources New Zealand Campaign

Gamma-ray Burst Science

NCT should be able to get good polarization measurements of a few gamma-ray bursts!

Nuclear Line Science

in the Galactic Center region

Improve upon COMPTEL's ²⁶Al map

Foreground:

NCT simulations using different ²⁶Al tracer maps between which COMPTEL couldn't distinguish (top: DIRBE 240 um tracing dust – bottom: 53 GHz free-free emission tracing ionized matter)

Plus: Determine the origin of ⁶⁰Fe

Continuum Sensitivity

Polarization Performance

Orange: Measured polarization (from Cyg X-1 and Crab) Blue: Estimated polarization

Further detector developments

... in connection with GRIPS (= NCT-like system for solar observations):

Improved Germanium detectors with 0.5 mm instead of 2.0 mm strip pitch:

- ✓ Better interaction resolution
 - Better event reconstruction performance
 - Better background suppression
 - Better angular resolution (up to 1.6 degree)
 - Better sensitivity

Switch to ASIC read-out instead of discrete read-out

- ✓ lower power consumption
- ✓ lower mass
- ✓ enables more channels and thus better resolution

GRIPS Germanium detector

Ultimate Goal: A NCT Space Mission

Advantages compared to balloon mission:

- No atmospheric absorption
- Less background
- Less event cuts needed
 More effective area
- Larger field-of-view at L2 and using a boom almost 4π is possible!
 - Monitor all the sky all the time!
- Longer mission

Thank you

